

size 43

Telescopic Slides

L1994.43

Material

Cold drawn bearing steel raceways hardened to 60 HRc. Balls - hardened steel.

Zinc coating to ISO2081 (excluding raceways). Corrosion resistant coatings available on request.

Technical Notes

These are extremely strong and rigid telescopic slides with high load capacities, offering a semi-telescopic movement. C_{0rad} is the load rating for a single telescopic slide. They have very low deflection characteristics. Weight 5,25 Kg/m. Temperature range: -30°C to +170°C.

Tips

A double direction stroke can be obtained by removing the end stops screws at the end of each side of the intermediate member.

For double direction strokes, when the moving element has started the stroke in the opposite direction it will catch the intermediate member and force it to return.

The slides have end stops, but these are not designed to stop a moving, loaded slide. External end stops should be used for this.

Special strokes up to 65% of the closed length can be provided on request.

Important Notes

d₁=Ø8.5 and d₂=M8. r=2,5.

Order No.		₂ stroke	h_1	W_1	I ₃	I_4	h ₂	w ₂	w ₃	No. of	Load (per rail) C ₀	Load (per rail) C ₀	M _×	My	Mz
										holes	ax	rad	Nm	Nm	Nm
											IN max	N max	max.	max.	max.
11004 42 0210	210	100	10	22	00	25	22	01	125	2	1100	1700	60	00	100
L1994.43-0210	210	123	43	22	80	20	23	21	13,3	3	1190	1/00	06 5	204	123
	290	200	43	22	80	20	23	21	13,0	4	2123	3033	90,0	204	294
L1994.43-0370	370	208	43	22	80	25	23	21	13,5	5	2482	3546	119	513	444
L1994.43-0450	450	243	43	22	80	25	23	21	13,5	6	3436	4909	151	514	/35
L1994.43-0530	530	2/8	43	22	80	25	23	21	13,5	/	4415	6308	184	/66	1092
L1994.43-0610	610	313	43	22	80	25	23	21	13,5	8	5410	//28	210	1069	1525
L1994.43-0690	690	363	43	22	80	25	23	21	13,5	9	5/30	8185	240	1297	1853
L1994.43-0770	770	398	43	22	80	25	23	21	13,5	10	6533	9490	273	1687	2405
L1994.43-0850	850	433	43	22	80	25	23	21	13,5	11	7432	10617	305	2120	3030
L1994.43-0930	930	483	43	22	80	25	23	21	13,5	12	8034	11477	331	2442	3489
L1994.43-1010	1010	518	43	22	80	25	23	21	13,5	13	9031	12902	362,5	2964	4233
L1994.43-1090	1090	568	43	22	80	25	23	21	13,5	14	9904	13360	384	3343	4775
L1994.43-1170	1170	603	43	22	80	25	23	21	13,5	15	10342	14774	417	3945	5636
L1994.43-1250	1250	638	43	22	80	25	23	21	13,5	16	11198	16048	450	4602	6575
L1994.43-1330	1330	688	43	22	80	25	23	21	13,5	17	11654	16649	470,5	5067	7237
L1994.43-1410	1410	723	43	22	80	25	23	21	13,5	18	12618	17963	505	5809	8300
L1994.43-1490	1490	758	43	22	80	25	23	21	13,5	19	13366	19094	538	6601	9427
L1994.43-1570	1570	793	43	22	80	25	23	21	13,5	20	14532	20704	572	7442	10630
L1994.43-1650	1650	843	43	22	80	25	23	21	13,5	21	14964	21378	593,5	8032	11476
L1994.43-1730	1730	878	43	22	80	25	23	21	13,5	22	15962	22796	626	8961	12799
L1994.43-1810	1810	928	43	22	80	25	23	21	13,5	23	16274	23249	650	9603	13722
L1994.43-1890	1890	963	43	22	80	25	23	21	13,5	24	17142	24213	684	10619	15170

Partially Telescopic Slides size 43

Order No.		stroke	h ₁	W_1	l ₃	I ₄	h ₂	w ₂	w ₃	No. of	Load (per rail) C ₀	Load (per rail) C ₀	M _x	My	Mz
										holes	ax N	rad N	Nm max.	Nm max.	Nm max.
											max.	max.			
L1994.43-1970	1970	1013	43	22	80	25	23	21	13,5	25	17585	25122	709	11320	16169

automotioncomponents.co.uk

Telescopic Rail

Introduction

Telescopic Rail

If you are looking for heavy duty, quality telescopic rails for industrial or commercial applications then these are the rails for you!

The best heavy duty telescopic slides on the market

These are unique rails that are not made from pressed steel but from cold-drawn steel section. The rails can take high loads, with very long strokes, with repeated use, low deflection and minimal play.

Quality Smooth running,

hardened raceways. Special slides available.

Partial Stroke (~60%)

Over-extension (150%)

Rail types

Our range of telescopic rails covers partial, full stroke and over-extension.

For more information refer to our product specifications pages or call our technical department.

ov-telescopic-rail-introduction-rnh - Updated - 03-03-2023

Specifications and applications

Specifications

- Generally all our telescopic rails have induction hardened raceways.
- Cold drawn roller bearing steel.
- Maximum operating speed 0,8 m/s.
- Temperature range (mainly -30°C to +170°C).
- Electrolytic galvanised to ISO 2081, other anti-corrosion finishes on request.
- High load ratings with low deflection characteristics.
- Minimum play (even at maximum load ratings).
- Smooth, free running movement.
- Long strokes and heavy load ratings.
- Can be used in horizontal applications only (due to the use of a ball cage), with the exception of part number L1985 which uses roller bearings.

Applications

Special purpose & packaging machines Precision positioning systems handling units robotic systems • cutting machines

Seating Sliding seats disability ramps seat extensions

- For telescopic rails with an "upper" and "lower" rail, the moving rail should be the lower one. Using the upper rail as the moving element effects the smooth running and the load capacity of the telescopic sliders.
- All load capacity figures are given for a single rail, and based on continuous use.
- Fix to structures using screws of strength class 10,9.
- Anti-corrosion option. We have a highly effective anti-corrosive coating option, and we utilise stainless steel ball bearings in this version.

Safety guarding Extending protective systems sliding gates automatic pick & place

Logistics solutions Container extensions heavy duty extending systems sliding doors

Transport (rail) Seat adjustment sliding doors battery removal units

Disability vehicles Sliding seats extension ramps

Transport (automotive) Ambulance sliding systems fire fighting vehicles sliding panels

Transport (naval) Sliding hatches pull-out storage

ov-telescopic-rail-specifications-applications-lnh - Updated - 03-03-2023

Transport (military) Sliding seats protective hatches stretcher extensions

Technical Information

Product overview

L1989 - these are full extension slides made from 316L stainless steel. For use in applications where corrosion may be a problem.

Standard extension	100%
Special extension range	No
Single & double direction?	No
Number of rail sizes	1
Maximum extension (at 100%)	1120 mm
Maximum load (per rail)	35 Kg

Extended stroke telescopic rails

L1997 - these are extended stroke (150%), heavy duty telescopic rails, with high load capacity and stiffness.

Standard extension	150%
Special extension range	On request
Single & double direction?	No
Number of rail sizes	1
Maximum extension (at 150%)	3030 mm
Maximum load (per rail)	240 Kg

L1998 - these are extended stroke (150%), heavy duty telescopic rails. They have a solid steel intermediate element. They are our heaviest duty extended stroke units.

Standard extension	150%
Special extension range	On request
Single & double direction?	No
Number of rail sizes	1
Maximum extension (at 150%)	3020 mm
Maximum load (per rail)	480 Kg

ov-telescopic-rail-overview-c-rnh - Updated - 07-03-2023

Service life

Service life

The service life is defined as the time span between commissioning and the first fatigue or wear indications on the raceway. The service life of a telescopic rail is dependent on several factors, such as the effective load, the installation precision, occurring shocks and vibrations, the operating temperature, the ambient conditions and the lubrication.

Calculation of the service life is based exclusively on the loaded rows of balls.

In practice, the decommissioning of the bearing, due to its destruction or extreme wear of a component, represents the end of service life.

This is taken into account by an application coefficient (f_i), so the service life consists of:

$$L_{Km} = 100 \cdot \left(\frac{\delta}{W} \cdot \frac{1}{f_i} \right)^3$$

- L = calculated service life in Km
- δ = load capacity factor in N (see tables on following pages)
- W = equivalent load in N
- f_i = application coefficient

Application coefficient f_i

Operating conditions	Safety factor (.fi)		
Neither shocks or vibrations, smooth and low-frequency direction change, clean environment	1,3 - 1,8		
Light vibrations and average direction change	1,8 - 2,3		
Shocks and vibrations, high-frequency direction change, very dirty environment	2,3 - 3,5		

If the external load, P, is the same as the dynamic load capacity, C_{orad} (which of course must never be exceeded), the service life at ideal operating conditions ($f_i = 1$) is 100Km.

For a single load P, the following applies: W = P.

If several external loads occur simultaneously, the equivalent load is calculated as follows:

W = P_{rad} + (
$$\frac{P_{ax}}{C_{0ax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}$$
) · C_{0rad}

