

Stainless Square Flanged Bearing four point flange

Material

Stainless steel (AISI 304), with smooth surfaces. Bearing stainless steel (440C) with 2RS seals, lubricated with food grade grease (USDA approved).

5 ()

Technical Notes

Self-aligning bearing units. Temperature range for bearings: -15°C to

+120°C.

Resistant to a moisture and a wide range of aggressive chemicals.

For optional shaft end caps add suffixes: -C0 for one open protective cap (with seal) for through shafts

-CC for closed protective cap for shaft ends.

Tips

Shaft retention with two set screws (at 120° offset). Used with h6 tolerance shafts (see our part no.s L1770-L1776). Maximum housing loads measured @ 20°C.

Order No.	d_1 for h6	I_1	d ₂	d ₃	I_2	w_1	w ₂ +0.3 -0	w ₃	w ₄	w ₅	Weight kg
L1872.012	12	86	12	64	31.0	33.3	25.5	12.0	15	0.66	54
L1872.015	15	86	12	64	31.0	33.3	25.5	12.0	15	0.64	54
L1872.017	17	86	12	64	31.0	33.3	25.5	12.0	15	0.63	54
L1872.020	20	86	12	64	31.0	33.3	25.5	12.0	15	0.61	0.71
L1872.025	25	95	12	70	34.1	35.8	27.0	14.0	16	0.82	60
L1872.030	30	108	12	83	38.1	40.2	30.5	14.0	18	1.31	70
L1872.035	35	116	14	92	42.9	44.4	33.5	14.5	19	1.41	80
L1872.040	40	130	16	102	49.2	51.2	36.0	14.5	21	1.89	88
L1872.045	45	137	16	105	49.2	52.2	38.0	15.5	22	2.32	95
L1872.050	50	143	16	111	51.6	54.6	40.0	15.0	22	2.65	100
L1872.055	55	162	19	130	55.6	58.4	44.0	20.0	25	4.06	110
L1872.060	60	175	19	143	65.1	68.7	48.0	20.0	29	5.48	120

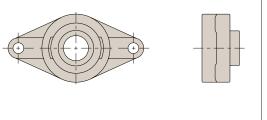
Order No.	w ₆	w ₇	Speed rpm	Dyn. load C kN max.	Static bearing load C _o kN max.	Housing load F ₁ kN max.	Housing load F ₆ kN max.	Torque screw to Nm	Set screw size
L1872.012	12.7	37.8	4800	10.1	6.8	86	36	8.5	M 6x1
L1872.015	12.7	37.8	4800	10.1	6.8	86	36	8.5	M 6x1
L1872.017	12.7	37.8	4800	10.1	6.8	86	36	8.5	M 6x1
L1872.020	12.7	37.8	4800	10.1	6.8	86	36	8.5	M 6x1
L1872.025	14.3	39.9	4000	11.0	8.0	130	50	8.5	M 6x1
L1872.030	15.9	44.4	3400	15.3	11.5	130	60	8.5	M 6x1
L1872.035	17.5	48.2	3000	20.1	15.6	130	70	20	M 8x1
L1872.040	19.0	54.4	2600	22.8	18.2	140	78	20	M 8x1
L1872.045	19.0	55.9	2400	25.7	20.8	200	90	40	M 10x1,25
L1872.050	19.0	59.8	2200	27.5	23.7	200	100	40	M 10x1,25
L1872.055	22.2	62.6	1800	34.0	25.5	255	125	40	M 10x1,25
L1872.060	25.4	72.9	1600	41.0	31.5	315	155	40	M 10x1,25

Bearing Supports from Automotion Components

Self-Aligning Bearing Units

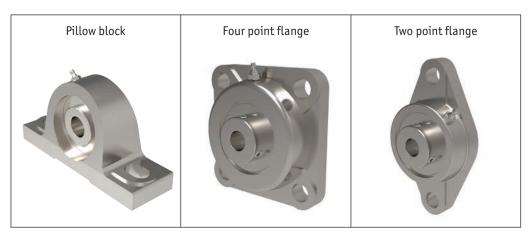
Overview

Housing material options



Cast iron housing Standard version, passivated and painted Ø12-120mm.

Pillow Bearings



Stainless steel housing Stainless AISI 304, Ø12-60mm. Thermoplastic housing Food grade applications, smooth PBT resin material, Ø20-40mm.

Use with Automotion linear shafts L1770-L1774

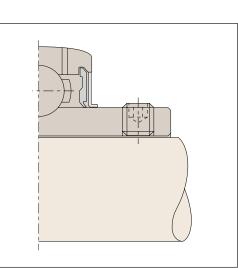
Options

Self-Aligning Bearing Units

g

ea

D(

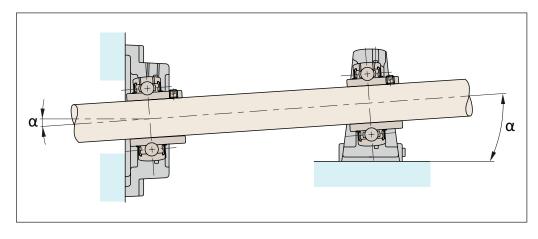


- Single row radial contact self-aligning bearings (steel 100Cr6).
- Re-lubricatable.
- Fixing to shaft via set screw.
- Operating temperature range -20° to +100°.

Shaft fixing set screw

2 set screws at 120° with hexagon socket and knurled cup point, recommended shaft tolerance h6/h7.

Set screw	Max. tightening torque (Nm)	Hexagon socket A/F
M5 x 0,8	3,5	2,5
M6 x 1	5,5	3,0
M8 x 1	11,5	4,0
M10 x 1,25	22,0	5,0
M12 x 1,25	33,0	6,0
M14 x 1,5	42,0	7,0
M16 x 1,5	64,0	8,0
M18 x 1,5	75,0	9,0
M20 x 1,5	120,0	10,0



Lubrication

Our units are lubricated for life. If re-lubrication is necessary (because of severe operating conditions), use a lithium soap base with a viscosity of 100mm²/s at 40°C.

Installation

Shaft misalignment is compensated to a certain degree by the shaft-aligning bearings.

If re-lubrication required

 $\alpha = \pm 2^{\circ}$

If no re-lubrication

 $\alpha = \pm 5^{\circ}$

 $\alpha = \pm 5^{\circ}$

When using protective end caps

- Single row radial contact self-aligning bearings (stainless steel AISI 440C), stainless steel cage.
- Lubricated with food grade grease.
- Fixing to shaft via set screw.

The radial loads of the cast iron bearing supports are limited by the bearings themselves – the housings can withstand the maximum loads.

Please see the part numbers for dynamic and static radial loads. The maximum axial loads are 50% of the maximum static radial loads. The standard bearing have a C3 clearance.

	ninal size m)	Radial bearing clearance (µ) C3		
Above	Up to	Min.	Max.	
10	18	11	25	
18	24	13	28	
24	30	13	28	
30	40	15	33	
40	50	18	36	
50	65	23	43	
65	80	25	51	
80	100	30	58	
100	120	36	66	
120	140	41	81	

When choosing a suitable bearing size – this depends on the load and speed required.

If the load acts mainly whilst the bearing rotates, then it is a dynamic load, if it acts mainly during no movement or low speeds, then it is a static load.

The maximum for both of these, for each bearing, is shown in the part tables.

Dynamic equivalent loads:

For some situations the bearing will have to withstand both radial and axial loads and we then need to calculate an equivalent dynamic load using the following equation:

$$L = X \bullet F_r + Y \bullet F_a (kN)$$

- P = Dynamic equivalent load (kN)
- F_r = Actual radial load (kN)
- $F_a = Actual axial load (kN)$
- X = Radial factor
- Y = Axial factor

Load ratio table 1:

F _a C _{or}	е	F _a F _r	≤e	F _a F _r	e C _o	
Or		Х	Y	Х	Y	
0,014	0,19				2,30	
0,028	0,22				1,99	
0,056	0,26				1,71]
0,084	0,28				1,55	
0,110	0,30	1	0	0,56	1,45]
0,170	0,34				1,31	
0,280	0,38				1,15]
0,420	0,42				1,04]
0,560	0,44				1,00]

Limiting value

Support

Radial static load rating (see dimension tables for ball bearing units)

Static equivalent loads

For situations where there are radial and axial loads on the static or slow moving bearings: $P_0 = X_0 \bullet F_r + Y_0 \bullet F_a$ (kN) $P_0 = F_r$ if $\frac{F_a}{F_r} \le 0.8$ For all bearing inserts the following applies: $\mathsf{P}_{_0}$ = Static equivalent load (kN) $X_0 = 0.6$ $Y_0 = 0.5$ = Static radial factor Static axial factor Using the ratio *fs*, it can be checked if sufficient static dimensioning for the insert has been ensured: $fs = \frac{C_{0r}}{p_{0r}}$ Some standard values are: Minimal demands for running smoothness and rotating movement fs = 0.7occasional rotating bearing, normal demands for running fs = 1.0 fs = 2.0 smoothness, high demands for running smoothness It should be noted that this ratio does not provide any assurance against a break or similar, but instead it is assurance against excessive local deformation in the rolling contact (ball/raceway). Calculating bearing life

When calculating bearing life for bearing units, the following applies:

$$L_{10} = \left(\frac{C_r}{p}\right)^3$$

If the bearing life should be specified in hours, the following applies:

$$L_{10h} = \left(\frac{C_r}{p}\right)^3 \bullet \frac{10^6}{60n}$$
 (h)

$$n = speed (min^{-1})$$

(10⁶ revolutions)