
# **Oval Flanged Bearing Unit**

cast iron







L1864

#### Material

Cast iron (FG20 or FG25), passivated and painted blue (RAL 5010). Steel, selfaligning bearing units with double seals, lubricated for life.

#### **Technical Notes**

Self-aligning bearings, relubricatable. Temperature range: -20°C to +120°C. The max. axial load is 0.5 x radial static load.

The housings are rated to take the maximum bearing loads.

For optional shaft end caps add suffixes:

- -CO for one open protective cap (with seal) for through shafts
- -CC for closed protective cap for shaft ends.

#### **Tips**

Shaft retention with two set screws (at

120° offset).

Used with h6 tolerance shafts (see our part no.s L1770-L1776).

#### **Important Notes**

For precise positioning of the flanged units they are provided with a rear centring bore and dowel pin location - please see technical pages fro these dimensions.

| Order No. | d <sub>1</sub> for h6 | l <sub>1</sub><br>±0.7 | $h_1$          | l <sub>2</sub> | $d_2$          | d <sub>3</sub> | $d_4$                          | $d_5$ | h <sub>2</sub>                 | h <sub>3</sub>     | Weight<br>kg   |
|-----------|-----------------------|------------------------|----------------|----------------|----------------|----------------|--------------------------------|-------|--------------------------------|--------------------|----------------|
| L1864.012 | 12                    | 112                    | 30.3           | 90.0           | 29.0           | 11.5           | R1/8"                          | 54    | 37.3                           | 10.0               | 0.5            |
| L1864.015 | 15                    | 112                    | 30.3           | 90.0           | 29.0           | 11.5           | R1/8"                          | 54    | 37.3                           | 10.0               | 0.5            |
| L1864.017 | 17                    | 112                    | 30.3           | 90.0           | 29.0           | 11.5           | R1/8"                          | 54    | 37.3                           | 10.0               | 0.5            |
| L1864.020 | 20                    | 112                    | 30.3           | 90.0           | 29.0           | 11.5           | R1/8"                          | 54    | 37.3                           | 10.0               | 0.5            |
| L1864.025 | 25                    | 124                    | 29.3           | 99.0           | 34.0           | 11.5           | R1/8"                          | 60    | 38.7                           | 11.0               | 0.6            |
| L1864.030 | 30                    | 142                    | 32.1           | 116.5          | 40.3           | 11.5           | R1/8"                          | 70    | 42.2                           | 12.0               | 0.8            |
| L1864.035 | 35                    | 155                    | 33.7           | 130.0          | 48.0           | 14.0           | R1/8"                          | 80    | 46.4                           | 12.5               | 1.1            |
| L1864.040 | 40                    | 172                    | 37.5           | 143.5          | 53.0           | 14.0           | R1/8"                          | 88    | 54.2                           | 13.0               | 1.6            |
| L1864.045 | 45                    | 180                    | 37.5           | 148.5          | 57.2           | 14.0           | R1/8"                          | 95    | 54.2                           | 13.0               | 1.8            |
| L1864.050 | 50                    | 190                    | 41.6           | 157.0          | 61.8           | 18.0           | R1/8"                          | 100   | 60.6                           | 13.0               | 2.1            |
| L1864.055 | 55                    | 222                    | 45.8           | 184.0          | 69.0           | 18.0           | R1/8"                          | 110   | 64.4                           | 15.0               | 3.4            |
| L1864.060 | 60                    | 238                    | 50.4           | 202.0          | 74.9           | 18.0           | R1/8"                          | 120   | 73.7                           | 16.0               | 3.7            |
| L1864.065 | 65                    | 258                    | 57.0           | 216.0          | 82.0           | 21.0           | R1/8"                          | 132   | 77.7                           | 18.0               | 4.0            |
| L1864.070 | 70                    | 258                    | 57.0           | 216.0          | 86.5           | 21.0           | R1/8"                          | -     | 82.4                           | 18.0               | 5.4            |
| L1864.075 | 75                    | 258                    | 57.0           | 216.0          | 91.5           | 21.0           | R1/8"                          | -     | 82.5                           | 18.0               | 5.2            |
| Order No. | h <sub>4</sub>        | h <sub>5</sub><br>±0.5 | h <sub>6</sub> | $w_1$          | w <sub>2</sub> | Dyr            | n. radial load C<br>kN<br>max. |       | Static radial lo<br>kN<br>max. | oad C <sub>0</sub> | Speed rpm max. |
| L1864.012 | 19                    | 12.7                   | 31.0           | 61             | 41.8           |                | 12.80                          |       | 6.65                           |                    | 6500           |
| L1864.015 | 19                    | 12.7                   | 31.0           | 61             | 41.8           |                | 12.80                          |       | 6.65                           |                    | 6500           |
| L1864.017 | 19                    | 12.7                   | 31.0           | 61             | 41.8           |                | 12.80                          |       | 6.65                           |                    | 6500           |
| L1864.020 | 19                    | 12.7                   | 31.0           | 61             | 41.8           |                | 12.80                          |       | 6.65                           |                    | 6500           |
| L1864.025 | 19                    | 14.3                   | 34.0           | 70             | 43.9           |                | 14.00                          |       | 7.88                           |                    | 6500           |
| L1864.030 | 20                    | 15.9                   | 38.1           | 80             | 46.9           |                | 19.50                          |       | 11.20                          |                    | 4500           |
| L1864.035 | 21                    | 17.5                   | 42.9           | 92             | 50.2           |                | 25.70                          |       | 15.20                          |                    | 4500           |
| L1864.040 | 24                    | 19.0                   | 49.2           | 105            | 57.9           |                | 29.60                          |       | 18.20                          |                    | 3500           |

0333 207 4498





# Oval Flanged Bearing Unit cast iron



| Order No. | h <sub>4</sub> | h <sub>5</sub><br>±0.5 | h <sub>6</sub> | $w_1$ | $W_2$ | byn. radiai load C<br>kN | Static radial load C <sub>0</sub> | Speed<br>rpm |      |
|-----------|----------------|------------------------|----------------|-------|-------|--------------------------|-----------------------------------|--------------|------|
|           |                |                        | _0.0           |       |       |                          | max.                              | max.         | max. |
|           | L1864.045      | 24                     | 19.0           | 49.2  | 111   | 58.4                     | 31.85                             | 20.80        | 3500 |
|           | L1864.050      | 28                     | 19.0           | 51.6  | 116   | 65.8                     | 35.10                             | 23.20        | 3000 |
|           | L1864.055      | 31                     | 22.2           | 55.6  | 134   | 69.1                     | 43.55                             | 29.20        | 3000 |
|           | L1864.060      | 34                     | 25.4           | 65.1  | 138   | 82.4                     | 52.50                             | 32.80        | 2500 |
|           | L1864.065      | 38                     | 25.4           | 65.1  | 160   | 82.9                     | 57.20                             | 40.00        | 2500 |
|           | L1864.070      | 38                     | 30.2           | 74.6  | 160   | -                        | 62.00                             | 45.00        | 2500 |
|           | 11864 075      | 38                     | 33.3           | 77.8  | 160   | _                        | 66.00                             | 49.50        | 2500 |

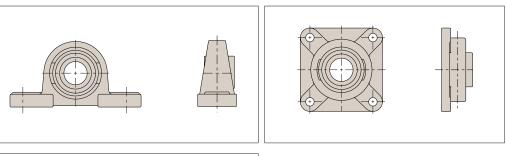


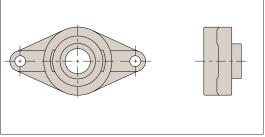
## **Self-Aligning Bearing Units**



earing Supports from Automotion Components

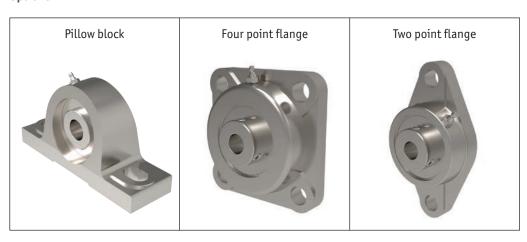
#### **Housing material options**





Cast iron housing Standard version, passivated and painted Ø12-120mm.

Stainless steel housing Stainless AISI 304, Ø12-60mm.

Thermoplastic housing Food grade applications, smooth PBT resin material, Ø20-40mm.


## **Pillow Bearings**





Use with Automotion linear shafts L1770-L1774

#### **Options**







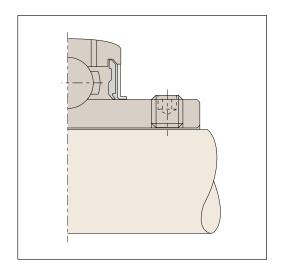
## **Self-Aligning Bearing Units**

**Technical** 



#### For cast iron housings

- Single row radial contact self-aligning bearings (steel 100Cr6).
- Re-lubricatable.
- Fixing to shaft via set screw.
- Operating temperature range -20° to +100°.

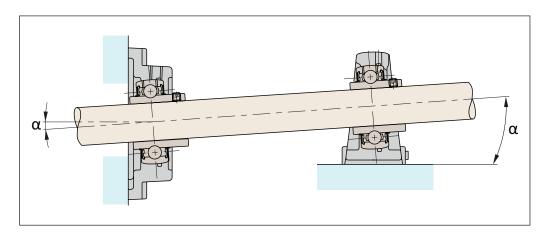

#### For stainless & thermoplastic housings

- Single row radial contact self-aligning bearings (stainless steel AISI 440C), stainless steel cage.
- Lubricated with food grade grease.
- Fixing to shaft via set screw.

#### Shaft fixing set screw

2 set screws at 120° with hexagon socket and knurled cup point, recommended shaft tolerance h6/h7.

| Set screw  | Max. tightening torque (Nm) | Hexagon socket<br>A/F |
|------------|-----------------------------|-----------------------|
| M5 x 0,8   | 3,5                         | 2,5                   |
| M6 x 1     | 5,5                         | 3,0                   |
| M8 x 1     | 11,5                        | 4,0                   |
| M10 x 1,25 | 22,0                        | 5,0                   |
| M12 x 1,25 | 33,0                        | 6,0                   |
| M14 x 1,5  | 42,0                        | 7,0                   |
| M16 x 1,5  | 64,0                        | 8,0                   |
| M18 x 1,5  | 75,0                        | 9,0                   |
| M20 x 1,5  | 120,0                       | 10,0                  |




#### Lubrication

Our units are lubricated for life. If re-lubrication is necessary (because of severe operating conditions), use a lithium soap base with a viscosity of 100mm<sup>2</sup>/s at 40°C.

#### Installation

Shaft misalignment is compensated to a certain degree by the shaft-aligning bearings.



If re-lubrication required

 $\alpha = \pm 2^{\circ}$ 

If no re-lubrication

 $\alpha = \pm 5^{\circ}$ 

When using protective end caps

 $\alpha = \pm 5^{\circ}$ 



## **Cast Iron Bearing Units**

Equivalent load ratings



earing Supports from Automotion Components

The radial loads of the cast iron bearing supports are limited by the bearings themselves - the housings can withstand the maximum loads.

Please see the part numbers for dynamic and static radial loads. The maximum axial loads are 50% of the maximum static radial loads. The standard bearing have a C3 clearance.

| Bore non<br>(m |       | Radial bearing clearance (μ) |      |  |
|----------------|-------|------------------------------|------|--|
| Above          | Up to | Min.                         | Max. |  |
| 10             | 18    | 11                           | 25   |  |
| 18             | 24    | 13                           | 28   |  |
| 24             | 30    | 13                           | 28   |  |
| 30             | 40    | 15                           | 33   |  |
| 40             | 50    | 18                           | 36   |  |
| 50             | 65    | 23                           | 43   |  |
| 65             | 80    | 25                           | 51   |  |
| 80             | 100   | 30                           | 58   |  |
| 100            | 120   | 36                           | 66   |  |
| 120            | 140   | 41                           | 81   |  |

When choosing a suitable bearing size - this depends on the load and speed required.

If the load acts mainly whilst the bearing rotates, then it is a dynamic load, if it acts mainly during no movement or low speeds, then it is a static load.

The maximum for both of these, for each bearing, is shown in the part tables.

#### Dynamic equivalent loads:

For some situations the bearing will have to withstand both radial and axial loads and we then need to calculate an equivalent dynamic load using the following equation:

е

$$L = X \bullet F_{r} + Y \bullet F_{r}$$
 (kN)

Dynamic equivalent load (kN)

Actual radial load (kN)

Actual axial load (kN)

Χ Radial factor

Axial factor

### Load ratio table 1:

| F <sub>a</sub> | e    | $\frac{\mathbf{F}_{a}}{\mathbf{F}_{r}}$ | ≤e | $\frac{F_{a}}{F_{r}} > e$ |      |  |
|----------------|------|-----------------------------------------|----|---------------------------|------|--|
| -Or            |      | Х                                       | Υ  | Х                         | Υ    |  |
| 0,014          | 0,19 |                                         |    |                           | 2,30 |  |
| 0,028          | 0,22 |                                         |    |                           | 1,99 |  |
| 0,056          | 0,26 |                                         |    |                           | 1,71 |  |
| 0,084          | 0,28 |                                         |    |                           | 1,55 |  |
| 0,110          | 0,30 | 1                                       | 0  | 0,56                      | 1,45 |  |
| 0,170          | 0,34 |                                         |    |                           | 1,31 |  |
| 0,280          | 0,38 |                                         |    |                           | 1,15 |  |
| 0,420          | 0,42 |                                         |    |                           | 1,04 |  |
| 0,560          | 0,44 |                                         |    |                           | 1,00 |  |

Limiting value

Radial static load rating (see dimension tables for ball bearing units)





## **Bearing Units**

Technical loads + life



#### Static equivalent loads

For situations where there are radial and axial loads on the static or slow moving bearings:

$$P_0 = X_0 \bullet F_r + Y_0 \bullet F_a (kN)$$

$$P_0 = F_r$$
 if  $\frac{F_a}{F_r} \le 0.8$ 

For all bearing inserts the following applies:  $X_0 = 0.6$   $Y_0 = 0.5$ Static equivalent load (kN)

Static radial factorStatic axial factor Static radial factor

Using the ratio fs, it can be checked if sufficient static dimensioning for the

insert has been ensured:  $fs = \frac{C_{0r}}{p_0}$ 

Some standard values are:

Minimal demands for running smoothness and rotating movement 0.7

occasional rotating bearing, normal demands for running 1.0

fs = 2.0smoothness, high demands for running smoothness

It should be noted that this ratio does not provide any assurance against a break or similar, but instead it is assurance against excessive local deformation in the rolling contact (ball/raceway).

#### Calculating bearing life

When calculating bearing life for bearing units, the following applies:

$$L_{10} = \left(\frac{C_r}{p}\right)^3$$
 (10<sup>6</sup> revolutions)

If the bearing life should be specified in hours, the following applies:

$$L_{10h} = \left(\frac{C_r}{p}\right)^3 \bullet \frac{10^6}{60n}$$
 (h)

= speed (min<sup>-1</sup>)

